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ABSTRACT

Current computational models of visual attention focus on
bottom-up information and ignore scene context. However,
studies in visual cognition show that humans use context to
facilitate object detection in natural scenes by directing their
attention or eyes to diagnostic regions. Here we propose a
model of attention guidance based on global scene config-
uration. We show that the statistics of low-level features
across the scene image determine where a specific object
(e.g. a person) should be located. Human eye movements
show that regions chosen by the top-down model agree with
regions scrutinized by human observers performing a visual
search task for people. The results validate the proposition
that top-down information from visual context modulates
the saliency of image regions during the task of object de-
tection. Contextual information provides a shortcut for effi-
cient object detection systems.

1. INTRODUCTION

While looking for a specific object in a complex and clut-
tered scene, human observers use visual context information
to facilitate the search, by directing their attention or eyes to
relevant regions in the image (e.g. in the street when search-
ing for cars, on a table searching for a plate). This strategy
is not considered by current computational models of visual
attention [3, 7], which focus on the saliency zones of the
image, independently of the meaning of the scene.

In this paper, we describe a computational model of at-
tention guidance that takes into account the visual context
(e.g. the scene) in which objects are embedded [10, 11]. We
show that the statistics of low-level features across a natural
scene is strongly correlated with the location of a specific
object. In the current study, the scheme is tested with the
task of locating probable locations of people in scenes, and
these selected regions are compared to human eye move-
ment scan patterns.

Models that integrate attention mechanisms are relevant
for computer vision as they can suggest strategies for find-
ing shortcuts for object detection and recognition. These

shortcuts can be used to select a set of possible candidate
locations of target objects within an image. Then, computa-
tionally more expensive object recognition procedures can
be applied in those regions [5]. In this paper, we propose
a simple attentional mechanism that does not use specific
information about the appearance of the target. Instead we
use a simple model of image saliency based on the distribu-
tion of local features in the image and a model of contextual
priors (that learns the relationship between context features
and the location of the target during past experience) in or-
der to select interesting regions of the image. The paper
shows that there could exist pre-attentive heuristics based on
the context within which an object is embedded, that would
provide a low-cost object detection shortcut by pre-selecting
relevant image regions.

2. SALIENCY AND OBJECT DETECTION

For bottom-up models of attention allocation, regions with
different properties from their neighboring regions are con-
sidered more informative and are supposed to attract atten-
tion. Those models provide a measure of the ’saliency’
of each location in the image across various low-level fea-
tures (contrast, color, orientation, texture, motion, [3, 13]).
Saliency measures are interesting in the framework of object
detection because, when looking for a target object, frequent
features in the image are more likely to belong to the back-
ground and, therefore, are poor predictors of the presence
of the target.

In saliency models, a saliency map is computed using
a hardwire scheme (e.g., [3]): the local image features are
processed by center-surround inhibition and then a winner
take all strategy is used to select the most salient regions.
The image features most commonly used for describing lo-
cal image structure (orientation, scale and texture) are the
outputs of multiscale oriented band-pass filters. Here, we
decompose each color subband using a steerable pyramide
[9] with 4 scales and 4 orientations (fig. 1). Each location
has a features vector vl(x) = {vl(x, k)}k=1,48 with 48 di-
mensions (fig. 1).

Here, we define the saliency in terms of the likelihood
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Fig. 1. Attentional system for object detection integrating local saliency and contextual priors about target location.

of finding a set of local features in the image. We use a
probabilistic definition of saliency that more naturally fits
with object detection and recognition formulations we later
show :

S(x) = p(vl)−1 (1)

In this definition, the saliency of a location is large when the
image features at that location are more unexpected in the
image. We approximate this probability by fitting a gaussian
to the distribution of local features in the image ([8]):

p(vl) =
e−1/2 (vl−µ)T X−1(vl−µ)

(2π)N/2|X |1/2
(2)

Although a mixture of gaussians produces a better fit of
the distribution, it did not significantly change the selected
salient points. As discussed later (fig. 2), the accuracy of
this model in predicting the fixated points by human sub-
jects did not differ with the performance of a more complex
model of saliency maps [3].

3. CONTEXTUAL OBJECT PRIMING

However, when looking for an object, the use of saliency
S(x) as defined in eq. (1) is insufficient for explaining hu-
man performance or for building interesting object detection
procedures. During the first glance at a scene (or 200 msec),
the attention of the observer is driven towards a region in the
image and the first saccade is programmed. This process is
task-dependent. When subjects are asked to search for a
specific target object, that object is fixated (and so located)
faster when it is consistent with the scene context than when
it is inconsistent [2]. Human observers are clearly using a
top-down mechanism to find regions of interest where an
object should be located, independent of the presence of the
physical features of the object [2, 1].

3.1. Contextual modulation of saliency

The role of the visual context is to provide information about
past search experiences in similar environments and strate-
gies that were successful in finding the target. When using a
statistical framework, object detection is formulated as the
evaluation of the probability function p(o|v l). This is the
probability of the presence of the object o given a set of
local measurements. As suggested in [11] a more robust ap-
proach should include contextual information. We can write
the probability of presence of object o at the location x as:

p(o,x |vl,vc) =
p(vl | o,x,vc)
p(vl |vc)

p(o,x |vc) (3)

where vc is the vector of contextual features (see next sec-
tion). Using Bayes rule, the probability can be decomposed
into three factors[11]: the object likelihood, (p(v l | o,x,vc)),
the local saliency p(vl |vc) and the contextual priors p(o,x |vc).
We are interested in the terms that do not require knowledge
of the appearance of the target:

Sc(x) =
p(o,x |vc)
p(vl |vc)

= S(x)p(o,x |vc) (4)

The interest of this term is that it avoids using a specific
model of the appearance of the target. The term S c(x) does
not incorporate any information about the distribution of
features that belong to the target. Therefore, it can be com-
puted efficiently, and does not depend on the featural com-
plexity of the target. The term S(x) = p(vl |vc)−1 (local
saliency) provides a measure of how unlikely it is to find
a set of local measurements within the context vc. It can
be approximated by the distribution of local features within
the image as in eq. (2). A term of saliency, eq. (1), appears
naturally in a statistical framework for object detection.

Here, we are ignoring the term p(vl | o,x,vc). How-
ever, experimental work [13] has shown that simple features
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Fig. 2. Mean distance values of scan pattern similarity between
human subjects and each of the different conditions.

of the target are also used for guiding attention (for instance
when looking for a red spot, attention can be directed to red
regions in the image).

3.2. Computing contextual image features

Contextual features have to describe the structure of the
whole image [6]. The representation has to be low dimen-
sional so that the PDF p(o,x |vc) can be learnt efficiently
and has to keep relevant information about the scene so that
the PDF can provide strong priors about the location of the
target. There are many possible representations of contex-
tual information such as collecting global image statistics,
color histograms, wavelet histograms, etc. Following [6],
here we represent the context by reducing the dimensional-
ity of the local features vl(x, k). First we take the absolute
value to remove variability due to contrast. Then we sub-
sample each subband by a factor M :

v(x, k) =
{|vl(x, k)|2 ↓M}

(5)

We further reduce the dimensionality by decomposing the
image features v(x, k) into the basis functions provided by
the principal component analysis:

an =
∑

x

∑

k

|v(x, k)| ψn(x, k) (6)

We propose to use the decomposition coefficients vC =
{an}n=1,L, with L = 60, as context features. The functions
ψn are the eigenfunctions of the covariance matrix defined
by the image features v(x, k). The resolution reduction of
eq. (5) allows for the PCA to be computed more efficiently.
We perform the PCA on more than 3000 natural images.

3.3. Learning the location of people

The role of the visual context factor in modulating attention
is to provide information about past search experience in

similar environments and the strategies that were successful
in finding the target. The learning is performed by training
the PDF p(o,x |vc) using a database of images for which
the location of the target is known. For the results shown in
this paper we train the PDF to predict the location of people.
For each image, the features vc and the location x of the
target (o = people) are known. We model the PDF using
a mixture of gaussians and the learning is performed using
the EM algorithm (see [11] for details). Fig. 1 shows an
example of PDF p(o,x |vc).

4. HUMAN EYE MOVEMENTS

In this section we study how the system explores a set of
36 real-world scenes for which eye movements have been
recorded for 8 subjects. In order to model the human eye
scan paths, we comparedhuman fixation patterns to patterns
derivedfrom a purely bottom-up approach (saliency) and pat-
terns that included top-down information (contextual prim-
ing). None of the images used in the experiments were
used during the training. First we describe the procedure
for recording eye movements.

4.1. Apparatus and Procedure

The right eye was tracked using a Generation 5.5 Fourward
Technologies Dual Purkinje Image Eyetracker. Digitized
full-color photographs of 36 real-world scenes, taken from
various sources, were displayed on a NEC Multisync P750
monitor (refresh rate = 143 Hz) at a viewing distance of
1.13 m, subtending 15.8 deg. x 11.9 deg. of visual an-
gle. There were 14 scenes with no people and 22 scenes
containing anywhere from 1 to 6 people. After the subject
centered their fixation, a scene appeared and observers were
instructed to count the number of people present. A scene
was displayed until the subject’s response or for a maximum
of 10 s. The eyetracker was used to record the position and
duration of fixations during the search.

4.2. Eye Movement Data Analysis

In order to analyze the eye movements data, we computed
the squared difference between corresponding fixation points
in two sets of fixations (see [4]): the eye movements pat-
tern made for each image and subject, was compared with
the eye movements pattern made by Itti et al. [3] saliency
model,S(x) saliency model, andSc(x) context control model
(cf. Figs. 2 and 3). In addition, we compared the distance
between subjects and a random pattern of fixations. Like in
[4], the study is restricted to the first seven fixations. Fig-
ure 2 summarizes the results. Distance between patterns
of fixations was normalized so that average distance within
subjects was 1 (each subject compared with other subjects
on the same image, for all images). The graph shows that
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Fig. 3. Pattern of 7 first eye movements performed by (a) a human observer (b) Itti et al. saliency model, (c) S(x) saliency model, (d) and
saliency with inclusion of top down information, Sc(x).

the pattern of fixations suggested by the contextual model
resembled human eye movements the closest. Pure saliency
models performed worse, but were still more similar to hu-
man data than a purely random process. There is no statis-
tical difference between performances of Itti’s model or the
probabilistic definition of saliency (eq. 1).

5. SUMMARY AND CONCLUSIONS

We presented a computational model of attention guidance
that integrates context information with image saliency to
determine regions of interest. By comparing scan patterns
of different models to those of human observers, we vali-
date the proposition that top-down information from visual
context modulates the saliency of regions during the task of
object detection. Contextual information provides an essen-
tial shortcut for efficient object detection systems.
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